Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.036
Filtrar
1.
J Virol ; 97(4): e0035923, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017528

RESUMEN

Mumps is a highly contagious viral disease that can be prevented by vaccination. In the last decade, we have encountered repeated outbreaks of mumps in highly vaccinated populations, which call into question the effectiveness of available vaccines. Animal models are crucial for understanding virus-host interactions, and viruses such as mumps virus (MuV), whose only natural host is the human, pose a particular challenge. In our study, we examined the interaction between MuV and the guinea pig. Our results present the first evidence that guinea pigs of the Hartley strain can be infected in vivo after intranasal and intratesticular inoculation. We observed a significant viral replication in infected tissues up to 5 days following infection and induction of cellular and humoral immune responses as well as histopathological changes in infected lungs and testicles, without clinical signs of disease. Transmission of the infection through direct contact between animals was not possible. Our results demonstrate that guinea pigs and guinea pig primary cell cultures represent a promising model for immunological and pathogenetic studies of the complex MuV infection. IMPORTANCE Understanding of mumps virus (MuV) pathogenesis and the immune responses against MuV infection is limited. One of the reasons is the lack of relevant animal models. This study explores the interaction between MuV and the guinea pig. We demonstrated that all tested guinea pig tissue homogenates and primary cell cultures are highly susceptible to MuV infection and that α2,3-sialylated glycans (MuV cellular receptors) are being abundantly expressed at their surface. The virus remains in the guinea pig lungs and trachea for up to 4 days following intranasal infection. Although asymptomatic, MuV infection strongly activates both humoral and cellular immune response in infected animals and provides protection against virus challenge. Infection of the lungs and testicles after intranasal and intratesticular inoculation, respectively, is also supported by histopathological changes in these organs. Our findings give perspective for application of guinea pigs in research on MuV pathogenesis, antiviral response, and vaccine development and testing.


Asunto(s)
Virus de la Parotiditis , Paperas , Animales , Cobayas , Humanos , Paperas/inmunología , Paperas/fisiopatología , Paperas/virología , Virus de la Parotiditis/metabolismo , Replicación Viral , Células Cultivadas , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Pulmón/virología , Testículo/virología
2.
Br J Haematol ; 198(4): 668-679, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35655410

RESUMEN

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Células Madre Hematopoyéticas , Factores de Edad , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , Trasplante de Médula Ósea/efectos adversos , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Vacunas contra la COVID-19/uso terapéutico , ChAdOx1 nCoV-19/inmunología , ChAdOx1 nCoV-19/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/inmunología , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Seroconversión , Trasplante Homólogo/efectos adversos , Vacunación/efectos adversos
3.
FASEB J ; 36(3): e22182, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113455

RESUMEN

Pre-pandemic influenza H5N1 vaccine has relatively low immunogenicity and often requires high antigen amounts and two immunizations to induce protective immunity. Incorporation of vaccine adjuvants is promising to stretch vaccine doses during pandemic outbreaks. This study presents a physical radiofrequency (RF) adjuvant (RFA) to conveniently and effectively increase the immunogenicity and efficacy of H5N1 vaccine without modification of vaccine preparation. Physical RFA is based on a brief RF treatment of the skin to induce thermal stress to enhance intradermal vaccine-induced immune responses with minimal local or systemic adverse reactions. We found that physical RFA could significantly increase H5N1 vaccine-induced hemagglutination inhibition antibody titers in murine models. Intradermal H5N1 vaccine in the presence of RFA but not vaccine alone significantly lowered lung viral titers, reduced body weight loss, and improved survival rates after lethal viral challenges. The improved protection in the presence of RFA was correlated with enhanced humoral and cellular immune responses to H5N1 vaccination in both male and female mice, indicating no gender difference of RFA effects in murine models. Our data support further development of the physical RFA to conveniently enhance the efficacy of H5N1 vaccine.


Asunto(s)
Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Pruebas de Inhibición de Hemaglutinación/métodos , Pulmón/inmunología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Pandemias/prevención & control , Vacunación/métodos
4.
Nat Commun ; 13(1): 882, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169146

RESUMEN

SARS-CoV-2 triggers a complex systemic immune response in circulating blood mononuclear cells. The relationship between immune cell activation of the peripheral compartment and survival in critical COVID-19 remains to be established. Here we use single-cell RNA sequencing and Cellular Indexing of Transcriptomes and Epitomes by sequence mapping to elucidate cell type specific transcriptional signatures that associate with and predict survival in critical COVID-19. Patients who survive infection display activation of antibody processing, early activation response, and cell cycle regulation pathways most prominent within B-, T-, and NK-cell subsets. We further leverage cell specific differential gene expression and machine learning to predict mortality using single cell transcriptomes. We identify interferon signaling and antigen presentation pathways within cDC2 cells, CD14 monocytes, and CD16 monocytes as predictors of mortality with 90% accuracy. Finally, we validate our findings in an independent transcriptomics dataset and provide a framework to elucidate mechanisms that promote survival in critically ill COVID-19 patients. Identifying prognostic indicators among critical COVID-19 patients holds tremendous value in risk stratification and clinical management.


Asunto(s)
COVID-19/inmunología , Inmunidad Celular/inmunología , Anciano , Anciano de 80 o más Años , COVID-19/genética , COVID-19/mortalidad , Enfermedad Crítica , Femenino , Expresión Génica , Humanos , Inmunidad Celular/genética , Leucocitos Mononucleares/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Reproducibilidad de los Resultados , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Transcriptoma/inmunología
5.
Nat Commun ; 13(1): 864, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165284

RESUMEN

Patients with hematological malignancies have impaired immune response after two doses of BNT162b2 (Pfizer/BioNTech) vaccine against SARS-CoV-2. Here, in this observational study (registration number HDH F20210324145532), we measure SARS-CoV-2 anti-Spike antibodies, neutralizing antibodies and T-cell responses after immune stimulation with a third dose (D3) of the same vaccine in patients with chronic lymphocytic leukemia (n = 13), B cell non-Hodgkin lymphoma (n = 14), and multiple myeloma (n = 16)). No unexpected novel side effects are reported. Among 25 patients with positive anti-S titers before D3, 23 (92%) patients increase their anti-S and neutralizing antibody titer after D3. All 18 (42%) initially seronegative patients remain negative. D3 increases the median IFN-γ secretion in the whole cohort and induces IFN-γ secretion in a fraction of seronegative patients. Our data thus support the use of a third vaccine dose amongst patients with lymphoid malignancies, even though some of them will still have vaccine failure.


Asunto(s)
Vacuna BNT162/inmunología , Neoplasias Hematológicas , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunización Secundaria/métodos , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología
6.
Front Immunol ; 13: 817905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185909

RESUMEN

The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , SARS-CoV-2/inmunología , Linfocitos B/inmunología , COVID-19/patología , Cambodia , Proteínas de la Nucleocápside de Coronavirus/inmunología , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Fosfoproteínas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35216061

RESUMEN

Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1ß mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.


Asunto(s)
Ácido Clorhídrico/inmunología , Inmunidad Celular/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Hidróxido de Sodio/inmunología , Vacunas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Citocinas/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Ratas
8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110413

RESUMEN

Changes in population density lead to phenotypic differentiation of solitary and gregarious locusts, which display different resistance to fungal pathogens; however, how to regulate their cellular immune strategies remains unknown. Here, our stochastic simulation of pathogen proliferation suggested that humoral defense always enhanced resistance to fungal pathogens, while phagocytosis sometimes reduced defense against pathogens. Further experimental data proved that gregarious locusts had significantly decreased phagocytosis of hemocytes compared to solitary locusts. Additionally, transcriptional analysis showed that gregarious locusts promoted immune effector expression (gnbp1 and dfp) and reduced phagocytic gene expression (eater) and the cytokine tumor necrosis factor (TNF). Interestingly, higher expression of the cytokine TNF in solitary locusts simultaneously promoted eater expression and inhibited gnbp1 and dfp expression. Moreover, inhibition of TNF increased the survival of solitary locusts, and injection of TNF decreased the survival of gregarious locusts after fungal infection. Therefore, our results indicate that the alerted expression of TNF regulated the immune strategy of locusts to adapt to environmental changes.


Asunto(s)
Saltamontes/inmunología , Saltamontes/microbiología , Inmunidad Celular/inmunología , Metarhizium/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Expresión Génica/inmunología , Fagocitosis/inmunología , Densidad de Población , Transcripción Genética/inmunología
9.
Front Immunol ; 13: 821595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154139

RESUMEN

Heterologous immunity, when the memory T cell response elicited by one pathogen recognizes another pathogen, has been offered as a contributing factor for the high variability in coronavirus disease 2019 (COVID-19) severity outcomes. Here we demonstrate that sensitization with bacterial peptides can induce heterologous immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) derived peptides and that vaccination with the SARS-CoV-2 spike protein can induce heterologous immunity to bacterial peptides. Using in silico prediction methods, we identified 6 bacterial peptides with sequence homology to either the spike protein or non-structural protein 3 (NSP3) of SARS-CoV-2. Notwithstanding the effects of bystander activation, in vitro co-cultures showed that all individuals tested (n=18) developed heterologous immunity to SARS-CoV-2 peptides when sensitized with the identified bacterial peptides. T cell recall responses measured included cytokine production (IFN-γ, TNF, IL-2), activation (CD69) and proliferation (CellTrace). As an extension of the principle of heterologous immunity between bacterial pathogens and COVID-19, we tracked donor responses before and after SARS-CoV-2 vaccination and measured the cross-reactive T cell responses to bacterial peptides with similar sequence homology to the spike protein. We found that SARS-CoV-2 vaccination could induce heterologous immunity to bacterial peptides. These findings provide a mechanism for heterologous T cell immunity between common bacterial pathogens and SARS-CoV-2, which may explain the high variance in COVID-19 outcomes from asymptomatic to severe. We also demonstrate proof-of-concept that SARS-CoV-2 vaccination can induce heterologous immunity to pathogenic bacteria derived peptides.


Asunto(s)
Infecciones Bacterianas/inmunología , COVID-19/inmunología , Inmunidad Heteróloga/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Vacunas contra la COVID-19/inmunología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Humanos , Inmunidad Celular/inmunología , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología
10.
Front Immunol ; 13: 832889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154154

RESUMEN

The potential effect of emerging SARS-CoV-2 variants on vaccine efficacy is an issue of critical importance. In this study, the possible impact of mutations that facilitate virus escape from the cytotoxic and the helper cellular immune responses in the new SARS-CoV-2 Omicron variant of concern was analyzed for the 551 and 41 most abundant HLA class I and II alleles, respectively. Computational prediction showed that almost all of these 592 alleles, which cover >90% of the human population, contain enough epitopes without escape mutations in the emerging SARS-CoV-2 Omicron variant of concern. These data suggest that both cytotoxic and helper cellular immune protection elicited by currently licensed vaccines are virtually unaffected by the highly contagious SARS-CoV-2 Omicron variant of concern.


Asunto(s)
COVID-19/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunidad Celular/inmunología , SARS-CoV-2/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inmunogenicidad Vacunal/inmunología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
Front Immunol ; 13: 834981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154159

RESUMEN

Humoral vaccine responses are known to be suboptimal in patients receiving B-cell targeted therapy, and little is known about vaccine induced T-cell immunity in these patients. In this study, we characterized humoral and cellular antigen-specific anti-SARS-CoV2 responses following COVID-19 vaccination in patients with ANCA-associated vasculitis (AAV) receiving anti-CD20 therapy, who were either B-cell depleted, or B-cell recovered at the time of vaccination and in normal control subjects. SARS-CoV-2 anti-spike (S) and anti-nucleocapsid (NC) antibodies were measured using electrochemiluminescence immunoassays, while SARS-CoV-2 specific T-cell responses to S glycoprotein subunits 1 (S1) and 2 (S2) and receptor binding domain peptide pools were measured using interferon-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. In total, 26 recently vaccinated subjects were studied. Despite the lack of a measurable humoral immune response, B-cell depleted patients mounted a similar vaccine induced antigen-specific T-cell response compared to B-cell recovered patients and normal controls. Our data indicate that to assure a humoral response in patients receiving anti-CD20 therapy, SARS-CoV-2 vaccination should ideally be delayed until B-cell recovery (CD-20 positive B-cells > 10/µl). Nevertheless, SARS-CoV-2 vaccination elicits robust, potentially protective cellular immune responses in these subjects. Further research to characterize the durability and protective effect of vaccine-induced anti-SARS-CoV-2 specific T-cell immunity are needed.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Huésped Inmunocomprometido , Rituximab/uso terapéutico , Adulto , Anciano , COVID-19/prevención & control , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Masculino , Persona de Mediana Edad , SARS-CoV-2
12.
Cell Rep ; 38(2): 110235, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34986327

RESUMEN

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Asunto(s)
Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , COVID-19/virología , Chlorocebus aethiops , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Células Vero
14.
Ann Neurol ; 91(3): 342-352, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35067959

RESUMEN

OBJECTIVE: The study was undertaken to assess the impact of B cell depletion on humoral and cellular immune responses to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccination in patients with various neuroimmunologic disorders on anti-CD20 therapy. This included an analysis of the T cell vaccine response to the SARS-CoV-2 Delta variant. METHODS: We investigated prospectively humoral and cellular responses to SARS-CoV-2 mRNA vaccination in 82 patients with neuroimmunologic disorders on anti-CD20 therapy and 82 age- and sex-matched healthy controls. For quantification of antibodies, the Elecsys anti-SARS-CoV-2 viral spike (S) immunoassay against the receptor-binding domain (RBD) was used. IFN-gamma enzyme-linked immunosorbent spot assays were performed to assess T cell responses against the SARS-CoV-2 Wuhan strain and the Delta variant. RESULTS: SARS-CoV-2-specific antibodies were found less frequently in patients (70% [57/82]) compared with controls (82/82 [100%], p < 0.001). In patients without detectable B cells (<1 B cell/mcl), seroconversion rates and antibody levels were lower compared to nondepleted (≥1 B cell/mcl) patients (p < 0.001). B cell levels ≥1 cell/mcl were sufficient to induce seroconversion in our cohort of anti-CD20 treated patients. In contrast to the antibody response, the T-cell response against the Wuhan strain and the Delta variant was more pronounced in frequency (p < 0.05) and magnitude (p < 0.01) in B-cell depleted compared to nondepleted patients. INTERPRETATION: Antibody responses to SARS-CoV-2 mRNA vaccinnation can be attained in patients on anti-CD20 therapy by the onset of B cell repopulation. In the absence of B cells, a strong T cell response is generated which may help to protect against severe coronavirus disease 2019 (COVID-19) in this high-risk population. ANN NEUROL 2022;91:342-352.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Linfocitos B/inmunología , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , SARS-CoV-2/inmunología , Adulto , Enfermedades Autoinmunes del Sistema Nervioso/sangre , Enfermedades Autoinmunes del Sistema Nervioso/epidemiología , Linfocitos B/metabolismo , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroinmunomodulación/inmunología , Estudios Prospectivos , SARS-CoV-2/metabolismo
15.
J Immunol ; 208(2): 203-211, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35017209

RESUMEN

The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Celular/genética , Invertebrados/inmunología , Receptores Inmunológicos/genética , Vertebrados/inmunología , Inmunidad Adaptativa/inmunología , Animales , Evolución Biológica , Evolución Molecular , Variación Genética/genética , Inmunidad Celular/inmunología , Invertebrados/genética , Receptores Inmunológicos/inmunología , Vertebrados/genética
16.
J Immunol ; 208(3): 549-561, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031580

RESUMEN

CTLs are known to contribute to immunity toward Theileria parva, the causative agent of East Coast fever. The Tp967-75 CTL epitope from the Muguga strain of T. parva is polymorphic in other parasite strains. Identifying the amino acids important for MHC class I binding, as well as TCR recognition of epitopes, can allow the strategic selection of Ags to induce cellular immunity toward T. parva In this study, we characterized the amino acids important for MHC class I binding and TCR recognition in the Tp967-75 epitope using alanine scanning and a series of variant peptide sequences to probe these interactions. In a peptide-MHC class I binding assay, we found that the amino acids at positions 1, 2, and 3 were critical for binding to its restricting MHC class I molecule BoLA-1*023:01. With IFN-γ ELISPOT and peptide-MHC class I Tet staining assays on two parasite-specific bovine CTL lines, we showed that amino acids at positions 5-8 in the epitope were required for TCR recognition. Only two of eight naturally occurring polymorphic Tp9 epitopes were recognized by both CTLs. Finally, using a TCR avidity assay, we found that a higher TCR avidity was associated with a stronger functional response toward one of two variants recognized by the CTL. These data add to the growing knowledge on the cross-reactivity of epitope-specific CTLs and specificities that may be required in the selection of Ags in the design of a wide-spectrum vaccine for East Coast fever.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Theileria parva/inmunología , Theileriosis/inmunología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/parasitología , Línea Celular , Epítopos de Linfocito T/inmunología , Inmunidad Celular/inmunología , Theileriosis/parasitología
17.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044832

RESUMEN

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , Canadá , Línea Celular , Cricetinae , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Liposomas/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas , Glicoproteína de la Espiga del Coronavirus/genética , Células TH1/inmunología
18.
J Neuroimmunol ; 362: 577788, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922128

RESUMEN

OBJECTIVES: To report clinical outcome, development of humoral and T-cell mediated immunity in convalescent COVID-19 people with multiple sclerosis (pwMS) treated with ofatumumab in the ALITHIOS study from a single center. METHODS: Testing for SARS-Cov2 IgG antibodies was performed on two occasions with at least three months apart between the two testing. During the second antibody testing, interferon-γ ELISpot was used to assess cellular immunity. RESULTS: All four subjects had mild COVID-19 infection without any sequelae. In all subjects except subject 2, COVID-19 was confirmed with PCR. Subjects 1, 2 and 4 had normal levels of IgM and IgG without measurable counts of CD19 cells prior to COVID-19. Subject 3 administered the last dose of ofatumumab 24 days prior to COVID-19 symptoms, but had a gap of 28 weeks of ofatumumab application beforehand due to low IgM levels. Subject 4 received COVID-19 vaccinations before second testing, so second testing and T-cell immunity testing were not performed. Subjects who were CD19 depleted did not had measurable levels of SARS-Cov2 IgG antibodies. Subject 3 had first and second SARS-COV2 titer of 118 U/ml and > 250 U/ml, respectively. All three pwMS showed T cell immunity against SARS-CoV-2. Quotient of basal spots divided by interferon-γ secreting spot forming units were 4, 8 and 14.7 SI in subjects 1, 2 and 3, respectively (>3 considered reactive). CONCLUSION: While no antibody response was observed in pwMS who were CD19+ lymphocyte depleted, T cell immunity against SARS-CoV-2 was observed in all three pwMS treated with ofatumumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , COVID-19/inmunología , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/inmunología , Adulto , Anticuerpos Antivirales/sangre , COVID-19/complicaciones , Ensayos Clínicos Fase III como Asunto , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Masculino
19.
Eur J Pharmacol ; 914: 174690, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34890543

RESUMEN

Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.


Asunto(s)
Artritis Reumatoide , Linfocitos B , Gelsemium , Alcaloides Indólicos/farmacología , Linfocitos T/inmunología , Animales , Formación de Anticuerpos/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Autoanticuerpos/sangre , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/inmunología , Agentes Inmunomoduladores/farmacología , Cooperación Linfocítica/inmunología , Medicina Tradicional China , Ratones
20.
Exp Neurol ; 347: 113901, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688600

RESUMEN

BACKGROUND AND PURPOSE: Stroke therapy still lacks successful measures to improve post stroke recovery. Neurotrophin-3 (NT-3) is one promising candidate which has proven therapeutic benefit in motor recovery in acute experimental stroke. Post stroke, the immune system has opposing pathophysiological roles: pro-inflammatory cascades and immune cell infiltration into the brain exacerbate cell death while the peripheral immune response has only limited capabilities to fight infections during the acute and subacute phase. With time, anti-inflammatory mechanisms are supposed to support recovery of the ischemic damage within the brain parenchyma. However, interestingly, NT-3 can improve recovery in chronic neurological injury when combined with the pro-inflammatory stimulus lipopolysaccharide (LPS). AIM: We elucidated the impact of NT-3 on human monocyte and T cell activation as well as cytokine production ex vivo after stroke. In addition, we investigated the age-dependent availability of the high affinity NT-3 receptor TrkC upon LPS stimulation. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from acute stroke patients and controls and incubated with different dosages of NT-3 (10 and 100 ng/mL) and with or without LPS or anti-CD3/CD28 for 48 h. Total TrkC expression and cell activation (CD25, CD69 and HLA-DR) were assessed by FACS staining. IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21 and IL-22 were quantified by cytometric bead array. RESULTS: Most monocytes and only a small proportion of T cells expressed TrkC in blood from humans without stroke. Activation of cells from young humans (without strokes) using anti-CD3/CD28 or LPS partially reduced the proportion of monocytes expressing TrkC whilst they increased the proportion of T cells expressing TrkC. In contrast, activation of cells from elderly humans (without strokes) did not affect the proportion of monocytes expressing TrkC and only anti-CD3/CD28 led to an increase in the proportion of CD4+ T cells expressing TrkC. In blood from stroke patients or controls, NT-3 treatment reduced the percentage of monocytes and CD4+ and CD8+ T cells that were activated and reduced all cytokines investigated besides IL-21. CONCLUSIONS: NT-3 attenuated immune responses in cells from stroke patients and controls. The mechanism whereby human immune cells respond to NT-3 may be via TrkC receptors whose levels are regulated by stimulation. Further work is required to determine whether the induction of sensorimotor recovery in rodents by NT-3 after CNS injury is caused by this attenuation of the immune response.


Asunto(s)
Citocinas/inmunología , Inmunidad Celular/inmunología , Monocitos/inmunología , Neurotrofina 3/farmacología , Accidente Cerebrovascular/inmunología , Linfocitos T/inmunología , Anciano , Anciano de 80 o más Años , Células Cultivadas , Citocinas/sangre , Femenino , Humanos , Inmunidad Celular/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neurotrofina 3/uso terapéutico , Método Simple Ciego , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...